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Abstract
We studied the energy spectrum of two coupled XY spin-1/2 chains with
different exchange integrals and inter-chain interaction of Ising type. The
thorough analytical treatment of two-magnon states was given for finite and
infinite lattice strips. To study the case of macroscopic number of inverted
spins we used the corresponding density matrix renormalization group (DMRG)
simulation. We also derived the self-consistent Bardeen–Cooper–Schrieffer
(BCS) estimates for the lowest energies of the system. The comparison of
the BCS and the DMRG estimates has shown incorrect behaviour of the BCS
approximation for energy as a function of the intra-chain exchange integrals. To
use the analytical results for two-magnon bound states we proposed a simple
approximate formula for the lowest n-magnon energies of an infinite ladder
with a more correct dependence on model parameters.

1. Introduction

The investigation of the spin-1/2 ladder systems has received much interest from the theoretical
and experimental points of view [1]. These systems are relevant to a number of quasi-one-
dimensional compounds such as SrCu2O3 and CuGeO3. A variety of theoretical techniques,
both analytical and numerical, are used to study the related two-chain spin-1/2 ladder with
isotropic antiferromagnetic interactions. One of the simplest anisotropic spin-1/2 one-
dimensional systems is the 1DXY model. It adequately describes a number of real compounds
[2–4], and simultaneously has a simple structure of the energy spectrum [5, 6]. Therefore
it is of interest to consider a system of two coupled XY chains because there is relatively
little information about anisotropic spin ladder systems. One such system is a ladder formed
by two coupled XY spin-1/2 chains with inter-chain interaction of Ising type proposed by
Shiba [7]. This model can be reduced to the 1D Hubbard model by means of Jordan–Wigner
transformation, the exact spectrum of which is available via the Bethe ansatz technique [7, 8].
We will study a simple generalization of the anisotropic spin ladder system to consider the
case of different intra-chain exchange integrals. Such a model may be of interest for the
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theoretical predictions of the magnetic structure of quasi-one-dimensional bimetallic molecular
magnets with each unit cell containing two spins of the same spin value. We will give an
analytical consideration of the two-magnon spectrum of the ladder, paying special attention
to the conditions of the existence of the bound states. The Jordan–Wigner transformation
in the case of different intra-chain integrals leads to the 1D Hubbard-like model with spin
dependent hopping integrals and a richer structure of the excitation spectrum. Unfortunately,
we were unable to obtain the exact n-magnon spectrum (n > 2). Therefore, we will apply a
slightly modified BCS self-consistent approximation [9, 10], and the numerical DMRG infinite
system method proposed by White [11]. To compare the results of these considerations we
will propose a simple approximation for the lowest eigenvalues of the ladder Hamiltonian,
which gives more accurate estimates in comparison with the BCS approach. We believe also
that the results of our consideration of energy spectrum are of interest for the investigation of
the phenomena of spin-dependent transport.

2. Some analytical results for the exact spectrum of the spin ladder with mixed
interactions and related Hubbard-like model

Let us consider the double spin-1/2 chain (the ladder structure with two legs) with different
constants of XY exchange interaction in the legs and Ising interaction in the rungs (figure 1).
The constant magnetic field is applied along the z-axis. Bohr magnetons in XY chains are
supposed to be different. The Hamiltonian of our system has the form

H = −
∑
α,n

2µαhS
z
α,n −

∑
α,n

Jα(S
x
α,nS

x
α,n+1 + Syα,nS

y

α,n+1)− J0

∑
n

Sz1,nS
z
2,n α = 1, 2 (1)

where �S1,n, �S2,n are spin-1/2 operators for the first and the second chains, J1, J2 are coupling
constants along theXY chains, J0 describes the Ising exchange interaction between the chains,
h is the constant magnetic field directed along the z-axis and µ1, µ2 are corresponding
magnetons. Let us first consider the general properties of the exact spectrum of the ladder
Hamiltonian.

  
 

J0

J1 

J2 

1

2

Figure 1. Two coupled XY spin-1/2 chains with different exchange integrals and inter-chain
interaction of Ising type.

Since the operators,
∑

n S
z
α,n, α = 1, 2 are integrals of motion the eigenvalues of (1) can

be classified according to the numbers of inverted spins N1 and N2 for the first and second legs
of the ladder, respectively. To use the unitary transformation [5]

Sxα,n → (−1)nSxα,n Syα,n → (−1)nSyα,n Szα,n → Szα,n (2)

we can change signs of Jα for one spin chain or for both simultaneously for a ladder with
an even number of unit cells (rungs) N . Hence, the energy spectrum of (1) does not depend
on signs of Jα for even N . We can choose these signs by such a way that in the space of
the eigenfunctions of z-projection of total spin of the ladder all non-diagonal elements of (1)
have non-positive values. On the other hand, for given values of Hamiltonian parameters h,
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Jα �= 0, J0, N1 and N2 the Hamiltonian matrix cannot be reduced to a block-diagonal form
by permutations of its rows. Therefore, according to Perron–Frobenius theorem, the lowest
eigenstate of (1) from the corresponding subspace is non-degenerate for even N and specified
values of the above parameters. For the strip-type ladder (open boundary conditions) this
conclusion is valid also for odd N .

In the case of J1 = J2 and open boundary conditions the lattice Hamiltonian (1) is mapped
to the 1D Hubbard model by means of Jordan–Wigner transformation [7]. For J1 �= J2 this
transformation leads to the 1D Hubbard-like model with spin dependent hopping integrals:

H = H1 − µ1h(N − 2N1)− µ2h(N − 2N2)− J0(N − 2N1 − 2N2)

4

H1 = −1

2

( N−1∑
i=1

J1a
+
iαai+1α + J2a

+
iβai+1β + h.c.

)
− J0

N∑
i=1

a+
iαaiαa

+
iβaiβ . (3)

Here the total number of particles in H1 coincides with the number of inverted spins (N1 +N2)
in Hamiltonian (1), and the numbers of α and β particles coincide with the numbers N1 and
N2 respectively. To apply unitary hole–particle transformation for α particles aiα → (−1)ia+

iα

we can easily show that, similar to ordinary 1D Hubbard model [8, 12], the energy spectrum
of H1 satisfies the following relation between positive and negative values of J0

E(N1, N2; |J0|) = N1|J0| + E(N1, N −N2; |J0|). (4)

In the strong magnetic field the ground state of (1) is ‘ferromagnetic’ with all spins ‘upwards’
(N1 = N2 = 0). Obviously, the condition h � max(Jα/2µα), α = 1, 2, and J0 > 0 is a
sufficient condition for ferromagnetic character of the ground state. The stationary states of
(1) with n inverted spins are described by the Schrödinger equation

(H − E0)|n〉 = ε|n〉
|n〉 =

∑
m1...mn

Aα1...αn
m1...mn

S−
α1m1...

S−
αnmn

|0〉 αi = 1, 2 i = 1, 2, . . . , n (5)

where E0 = −(µ1 +µ2)Nh−J0N/4 is the energy of the ‘ferromagnetic’ state, ε is the energy
of the state with n inverted spins measured from E0, |0〉 is the vector of the ferromagnetic state
and Aα1...αn

m1...mn
is the wavefunction in the lattice site representation.

If the inverted spins are located on only one of theXY chains, the corresponding eigenvalue
problem (5) can be solved exactly. The Ising interaction leads only to an additive term J0/2
to the energy of one-particle states of the one-dimensional XY chain

E =
n∑
i=1

εαki εαk = 2µαh + J0/2 − Jα cos k α = 1, 2 (6)

where ki = πli/(N + 1) for the linear chains [5, 6], and ki = π(2li + 1)/N , or ki = 2liπ/N ,
li = 0, 1, . . . , N − 1 for periodic boundary conditions [13, 14] with even and odd number of
excitations n, respectively (the case of periodic boundary conditions cannot be exactly reduced
to the ideal Fermi gas model). It should be noted that these excitations obey the Pauli exclusion
principle.

If the inverted spins are located on both chains the excitations are scattered, and the bound
states can be formed due to the Ising inter-chain interaction. For the positive values of J0 these
bound states give the main contribution in low-temperature properties of the model.

Let us consider the two-magnon energy spectrum of (1) with one inverted spin on each
XY chain and with the periodic boundary conditions. In this case we can introduce the total
quasi-momentum of the pair of inverted spins due to the translation symmetry of the lattice
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and seek for a solution of (5) in the form

A12
m1m2

= exp

(
ik(m1 + m2)

2

)
fl l = m1 −m2 = 0, 1, . . . , N − 1

k = 2πr

N
r = 0, 1, . . . , N − 1. (7)

From (5) and (7) we derive the following equation for fl :

fl[ε − 2(µ1 + µ2)h− J0] +
J

2
(eiϕfl+1 + e−iϕfl−1) = 0 l �= 0

J = (J 2
1 + J 2

2 + 2J1J2 cos k)1/2 tan(ϕ) = J1 − J2

J1 + J2
tan

(
k

2

)
(8)

with the boundary conditions

f0[ε − 2(µ1 + µ2)h] +
J

2
(eiϕf1 + e−iϕf−1) = 0 (9)

fl = eikN/2fl+N l � 0 and fl = eikN/2fl−N l � 0. (10)

We will seek for the general solution of the problem (8)–(10) in the form

fl = e−iϕl(Ajx
l + Bjx

−1) j =
{

1 l � 0

2 l � 0.
(11)

Here the parameter x satisfies the characteristic equation

x2N − 2xN cosϕ′N + 1 = 2β
N∑
n=1

x2n−1 (12)

and ϕ′ = k/2 + ϕ, β = J0/J and

ε = 2(µ1 + µ2)h + J0 − J

2

(
x +

1

x

)
. (13)

The parameter x is to be either complex of the form x = eiq , or real due to the real values of
ε. In the limit N → ∞ the complex values of x correspond to the continuous spectrum, and
real x (it can be selected with |x| � 1) corresponds to bound states. For the infinite ladder we
have only one boundary equation (9), and the energy of the continuous spectrum is

ε = 2(µ1 + µ2)h + J0 − (J 2
1 + J 2

2 + 2J1J2 cos k)1/2 cos q

0 � k < 2π 0 � q < π (14)

with two orthogonal wavefunctions

f
(1)
l =

{
A′

1 e−iϕl(2β sin ql + eiql sin q) l � 0
A′

1 e−iϕl eiql sin q l � 0

f
(2)
l =

{
B ′

2 e−iϕl e−iql sin q l � 0
B ′

2 e−iϕl(−2β sin ql + e−iql sin q) l � 0
(15)

for any given value of q.
The wavefunctions (7) can be written as

A12(1)
m1m2

=
{
A′′

1[eik1m1+ik2m2(1 + ia12)− ei(k2−2ϕ)m1+i(k1+2ϕ)m2 ] m1 � m2

A′′
1ia12 eik1m1+ik2m2 m1 > m2

A12(2)
m1m2

=
{
B ′′

2 ia12 ei(k2−2ϕ)m1+i(k1+2ϕ)m2 m1 � m2

B ′′
2 [(1 + ia12) ei(k2−2ϕ)m1+i(k1+2ϕ)m2 − eik1m1+ik2m2 ] m1 > m2

(16)
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where

k1 = k

2
− ϕ + q k2 = k

2
+ ϕ − q a12 = sin q

β
= J1 sin k1 − J2 sin k2

J0
.

In terms of k1 and k2, the energy (14) has the form ε = ε1
k1

+ ε2
k2

with εαk defined in (6), but k1

and k2 are not good quantum numbers. For q = 0 (this is equivalent to J1 sin k1 = J2 sin k2)
the wavefunctions (16) are equal to zero. Thus, we have a Pauli-like exclusion principle for
the continuous spectrum of two-magnon excitations.

For real x with |x| � 1 the wavefunction must be bounded as l → ±∞. Therefore
A1 = B2 = 0, in (11), and instead of (12) we have

2β + x − 1

x
= 0. (17)

Thus, for the infinite ladder two-magnon bound states with energy

ε = 2(µ1 + µ2)h + J0 −
( |J0|
J0

)
(J 2

0 + J 2
1 + J 2

2 + 2J1J2 cos k)1/2 0 � k < 2π (18)

exist for any value of the Ising inter-chain interaction and for any value of total quasi-momentum
k of a pair of inverted spins. For positive J0 the local energy level (18) lies under the low
boundary of the continuous spectrum (14) with the same value of k. For negative J0 this local
level has the maximal energy.

Full study of the spectrum of (1) requires some numerical estimates. Therefore, we
performed the exact diagonalization of the finite systems (up to 20 unit cells). For small
system sizes these estimates are subject to finite-size effects. It is therefore of interest to
examine how these effects influence the results of the above analytical consideration. For
finite chains of length N one can easily obtain from (12) the following inequalities for model
parameters at which the bound states exist:

J0 >
1

N
(J 2

1 + J 2
2 + 2J1J2 cos k)1/2(1 − cosϕ′N) (19)

and

|J0| > 1

N
(J 2

1 + J 2
2 + 2J1J2 cos k)1/2(1 − (−1)N cosϕ′N) (20)

for positive and negative J0 respectively. In the case of k = 0 it is easily seen that for either
positive J0 (all N ) or negative J0 and even N the bound state exists at any value of |J0|. The
same result can be obtained for even N and k = π . For negative J0 and odd N the bound
state with k = 0 exists only if the ladder length N exceeds the critical values defined by the
inequality

N >
2(J1 + J2)

|J0| N is odd. (21)

Note also that for odd N condition (19) is transformed to (20) by the substitution k → 2π − k.
To study the case k �= 0, π , let us consider the minimal value of |J0| at which the local

energy level exists as a function of J2/J1. The zeros of this function correspond to the absence
of restrictions for the value of J0, and they can be found from (19) and (20) by means of simple
transformations. For even N we obtain the following relation between model parameters:

J2/J1 = sin[2π(r − r ′)/N ]

sin[2πr ′/N ]
. (22)

Here the integer r corresponds to the total quasi-momentum k �= 0, π ;

r ′ =




1, 2, . . . , r 0 < r <
N

2

r − N

2
, r − N

2
+ 1, . . . ,

N

2
− 1

N

2
< r < N .
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Figure 2. Dependence of critical value of J0 on the values of J2 for N = 10 and r = 4.

For odd N and positive J0 we have the same formula (22) but with

r ′ =




1, 2, . . . , r 0 < r � N − 1

2

r − (N − 1)

2
, . . . ,

(N − 1)

2

N − 1

2
< r � N − 1.

For odd N and negative J0 we have

J2/J1 = sin[π(2r − 2r ′ − 1)/N ]

sin[π(2r ′ + 1)/N ]
(23)

where

r ′ =




0, 1, 2, . . . , r − 1 0 < r � (N − 1)

2

r − (N + 1)

2
, . . . ,

(N − 3)

2

(N − 1)

2
< r � N − 1.

In all cases for finite values J2/J1 the number of zeros equals r for r < N/2 and N − r for
r > N/2. Some numerical results of this consideration for even and odd N are depicted in
figure 2 and figure 3, respectively.

In the limiting cases of a ‘comb’ structure (J1 = 0 or J2 = 0) for finite even N , the local
level appears at arbitrarily small values of |J0|. For odd N there are nonzero critical values of
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Figure 3. Dependence of critical value of J0 on the values of J2 for N = 9 and r = 5.

Ising interaction J0 if k is specified by (N +1)/2 � r � N for J0 > 0, and 0 � r � (N −1)/2
for J0 < 0. These critical values are given by (21) with J1 = 0 or J2 = 0.

It should be noted that all of the above analysis for the character of the two-magnon
spectrum can be easily applied to the case of N inverted spins with the distributions
N1 = 1, N2 = N − 1 or N2 = 1, N1 = N − 1 if symmetry relation (4) is taken into
account.

3. BCS approximation

In the general case for N1 + N2 > 2, the study of the exact spectrum of (1) cannot be
performed analytically. Therefore an approximate consideration is of interest. Because of
the symmetry relation (4) for the lowest energy at specified values of quantum numbers
N1 and N2, we may restrict our consideration to the case of positive values of J0. This
corresponds to the attractive 1D Hubbard-like model. In the symmetric case (J1 = J2) the
energy states of this model can be found with a good accuracy by means of the variational
BCS-like approximation [9, 10]. Therefore, we will apply the same approach to the study of
the spectrum of (1) with macroscopic values of N1 and N2. Without loss of generality let us
consider only the spectrum of Hamiltonian H1. The derivation of BCS equations for H1 is
similar to the well known symmetric case and will not be presented here. For N � 1 they



4532 V O Cheranovskii et al

are

1 = J0

2N

∑
k

1√
(ω2

k + &2)

(24)

1

N

∑
k

ωk√
(ω2

k + &2)

= 1 − n (25)

E

N
= − 1

N

∑
k

√
(ω2

k + &2)− n2J0

4
+
&2

J0
+

(
µ +

nJ0

2

)
(n− 1) (26)

where ωk = 1
2 (J1 + J2) cos(k) − µ − nJ0/2, n = (N1 + N2)/N is the density of particles in

H1 and the sums are carried out over the first Brillouin zone (−π < k � π).
For given values of J1, J2, n and J0 equations (25) and (26) determine the chemical

potential µ and the BCS parameter &. It is easily seen that the BCS estimates of energy E as
a function of J1 and J2 satisfy the relation

E(J1, J2) = E(J ′
1, J

′
2) if J1 + J2 = J ′

1 + J ′
2. (27)

In the absence of a magnetic field and sufficiently large values of J0 the ground state of the
ladder corresponds to quantum numbers N1 = N2 = N/2. In this case it can be shown that
µ + nJ0/2 = 0 and for N → ∞ the ground state energy per unit cell ε0 has the form

ε0 = − 2

π

√
I 2 + &2E

(
I√

I 2 + &2

)
− J0

4
+
&2

J0
(28)

where I = 1
2 (J1 + J2), and the BCS parameter is defined from the equation

K

(
I√

I 2 + &2

)
= π

√
I 2 + &2

J0
.

In these expressions, K(x) and E(x) are full elliptic integrals of the first and second kind
respectively.

4. The DMRG study

In order to obtain more information about the energy spectrum of (1), we applied the standard
infinite system DMRG algorithm proposed by White. For two-magnon states the results of
DMRG simulations coincides with the analytical estimations with an accuracy of five digits
if 16 states are kept for each of DMRG iterations. We also studied three- and four-magnon
lowest energy states. For three and four inverted spins the lowest energy of the infinite system
coincides with the sum of corresponding two-magnon and one-magnon solutions. For an
infinite lattice strip such a coincidence is to be expected from the above analytical treatment.
We also considered the case of macroscopic number of inverted spins, which corresponds to
the value Sz = 0. In this case we kept 32–80 states, and performed up to 2000 iterations to
reach convergence. The truncation error as given by the sum of density matrix eigenvalues
of the discarded states was equal to 10−6 for the calculations with 80 states. The results of
DMRG simulation showed a violation of the BCS relation (27) for the energy. Thus, after
2000 DMRG iterations with 80 states kept we obtained the value ε0 = −2.7911 for J1 = 2.0,
J2 = 1.0, J0 = 5.0, and ε0 = −2.7882 for J1 = 1.5, J2 = 1.5, J0 = 5.0 (symmetric case).
The exact value of ε0 coincided with the second DMRG estimate with an accuracy of five digits
(we have found this via the well known analytical formula for the ground state energy of the
1D Hubbard model [8]). According to (27) estimates of ε0 for both sets of parameters should
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Figure 4. Lowest energies per rung of infinite ladder with N1 = N2 = 1
2N and J2 = 1 as a

function of J1. PA is a ‘pair’ approximation for the energy by formula (29).

be coincident. Hence the BCS approach does not reproduce correctly the dependence of ε0

on the values of intra-chain integrals. Since two different pair of inverted spins cannot occupy
the same rung of the ladder for sufficiently large values of |J0| one half of the lowest bound
two-magnon energy gives the lower bound for the exact energy per unit cell with specified
values of N1 = N2 = N/2. This estimate is free from the BCS mistake. Let us suppose that
we have a regular distribution of the quasi-impulses k of the pairs of inverted spins similar to
the distribution of quasi-impulses for the ground state of an ordinary XY chain in the absence
of a magnetic field. The corresponding estimate for the lowest energy of H1 has the following
form:

ε0 = − 1

π

√
J 2

0 + (J1 + J2)2E


 2

√
J1J2√

J 2
0 + (J1 + J2)2


 . (29)
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Despite the simple structure, this formula gives a more accurate estimate for the lowest energy
of the state with Sz = 0 in comparison with the BCS approach. The corresponding energy
estimates by formulae (28) and (29) and DMRG results are given in figure 4.

5. Summary and conclusion

We performed analytical and numerical studies of the excitation spectrum of the doubleXY spin
chain with inter-chain interaction of Ising type. This model is equivalent to the generalization
of the 1D Hubbard model to the case of spin dependent hopping. We found that two-magnon
bound states for the infinite system exist at any value of Ising inter-chain interaction J0 and
total quasi-momentum k of the pair of inverted spins. For positive J0 and a given k, the local
level lies below the continuous spectrum. For negative J0 it is above the continuous spectrum.

In the case of periodic boundary conditions and finite systems, which are of interest as a
model of the corresponding mesoscopic rings, the conditions for the existence of two-magnon
bound states have unexpectedly more complicated structure. For odd N and k = 0, we found
that for negative J0 there is a critical value of the chain length N at which the bound state
exists. For positive J0 (all N ) and negative J0 (even N ) the bound state with k = 0 exists for
any value of J0. The same result was obtained for even N and k = π . In contrast, for the
symmetric case J1 = J2 the bound state exists for all nonzero values of J0.

To study n-magnon energy states we performed self-consistent BCS and DMRG
calculations for an infinite ladder in the subspace Sz = 0. Even though the BCS approach
gives a very accurate estimate of the ground state energy for the 1D Hubbard model, it does
not reproduce correctly the dependence of the energy on the values of spin dependent hopping
integrals. Using ideas of the above exact consideration for two-magnon bound states we
derived a simple formula for an approximate estimation of the ground state energy, which is
more accurate in comparison with the corresponding BCS estimate.
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